
Introduc�on
We o�en hear the term ‘database maintenance’. So what exactly is it?
Everything requires effec�ve maintenance, including your database. Regular maintenance helps it run and 
perform efficiently to meet your business expecta�ons. Database Maintenance describes a set of tasks 
that are run with the inten�on to improve your database. There are rou�nes meant to help performance, 
free up disk space, check for data errors, hardware faults, update internal stats, and many other indis�nct 
(but generally important) things.

Database maintenance is a highly neglected topic in daily PostgreSQL opera�on. While it is a common 
understanding that database backups need to be done regularly and essen�ally, only a few users are aware 
of the extra work that goes into it. One of the main reasons, you don’t see many database maintenance 
works is the lack of in-depth knowledge of SQL itself, and being able to carry out the tasks with efficient 
�melines.

At �mes, a database maintenance not done properly may go unno�ced, but when the database 
performance is hit; is when it turns into a real issue.

THIS WHITEPAPER WILL TAKE YOU THROUGH THE COMMON DATABASE MAINTENANCE TASKS IN 

POSTGRESQL

Everything you need to know about
PostgreSQL Database Maintenance
Getting Inside ‘VACUUM’

Date: 21 June 2021



Key Highlights:

Vacuum is processed in PostgreSQL which does a clean-up job of dead rows or dead tuples. It is like 
defragmenta�on ac�vity of dead rows/tuples or commonly known as bloat.

1

PostgreSQL maintains the old tuples versioning for the visibility in transac�on via MVCC. Hence, it will 
not remove immediately and due to the MVCC func�onality it keeps those versions of data unless 
someone tells it to remove.

2

There is an automa�c vacuum process in PostgreSQL, but many �mes for specific load, DBA prefers to 
schedule this for be�er performance.

3

PostgreSQL is a low-maintenance database compared to most other database management systems. 
Nonetheless, appropriate a�en�on to maintenance tasks will go far towards ensuring a pleasant and 
produc�ve experience with the system.

In PostgreSQL, an opera�on like UPDATE or DELETE on a row does not immediately remove the old version 
of the row. If you have an applica�on that performs many UPDATE/DELETE opera�ons frequently in your 
database, it can grow quickly and need maintenance ac�vity periodically.

Generally, in the PostgreSQL database, maintenance ac�vity is performed periodically, known as 
vacuuming. Its two main tasks are removing dead rows and freezing transac�on IDs.

The vacuum process provides two modes to remove the dead rows; one is VACUUM and the other is 
VACUUM FULL.

VACUUM opera�on is responsible for removing the dead rows for each page of the table file, and other 
transac�ons can read the table while this process is running.

While on the other hand, Full VACUUM removes dead rows and defragments live rows of the whole file, 
and other transac�ons like any DDL, DML, and Select cannot access those tables while Full VACUUM is 
running.

About Postgres VACUUM

If someone does not vacuum frequently, then database performance will go down as versions of data 
tuples increase. In fact, a�er a few days/months, it may crash due to transac�on wraparound.

4



VACUUM:

Get each table from the specified tables.1

Acquire “ShareUpdateExclusiveLock” lock for the table. This lock allows reading from other transac�ons.2

Scan all pages to get all dead tuples and freeze old tuples if necessary.3

Remove the index tuples that point to the respec�ve dead tuples if they exist.4

Perform the following tasks, steps (6) and (7), for each page of the table.5

Remove the dead tuples and defragment the live tuples on the page.6

Update both the respec�ve FSM and VM of the target table.7

Clean up the indexes using the in-built func�on.8

Truncate the last page if the last one does not have any tuple.9

Update both the sta�s�cs and the system catalogs related to vacuum processing for the target table.10

Release “ShareUpdateExclusiveLock” lock.11

Update both the sta�s�cs and the system catalogs related to vacuum processing.12

Remove both unnecessary files and pages of the clog, if possible.13

A vacuum is used for recovering space occupied by “dead tuples” in a table. A dead tuple is created when a 
record is either deleted or updated (a delete followed by an insert). PostgreSQL doesn’t physically remove 
the old row from the table but puts a “marker” on it so that queries don’t return that row. When a vacuum 
process runs, the space occupied by these dead tuples is marked reusable by other tuples.

Vacuum processing performs the following tasks for specified tables or all tables in a database.

There are two new terms for you: Free Space Map (FSM) and Visibility Map (VM). Let me give you a brief 
explana�on of these terms.

In PostgreSQL, each table and index have an FSM to keep track of available space. It stores all free 
space-related informa�on alongside primary rela�on, and that rela�onship starts with the file node 
number plus the suffix _fsm.

Free Space Map (FSM):

The Visibility Map associates with each table and index and uses to keep track of which pages contain 
only tuples that are known to be visible to all ac�ve transac�ons. It stores in separate rela�on 
alongside the main rela�on, and it starts with the file node number plus a suffix _vm.

Visibility Map (VM):



For example, as you can see in the above diagram, one table has two pages. Let us concentrate on the 0th 
page, which is the first page. This page has four tuples. Tuple-2 is a dead tuple. In this case, PostgreSQL 
removes Tuple-2 and reorders the remaining tuples to repair fragmenta�on/bloat, and then updates both 
the FSM and VM of this page. PostgreSQL con�nues this process un�l the last page.

PostgreSQL-13 onward for VACCUM opera�on PARALLEL op�on is introduced, which helps to run index 
vacuuming and cleaning parallelly.

Please note that the PARALLEL op�on is only useful when there are at least two indexes in the table.

We will explain the freezing process later in this paper.

Page
8192 byte

Page

8192 byte

0th

1th

1 1

Tuple-4 Tuple-4Tuple-3 Tuple-3Tuple-2 Tuple-1 Tuple-1

2 23 34 4

Page Header Page Header

Dead Tuple

Vacuum

Vacuum Full process performs the following tasks for specified tables or all tables in the database.

Get each table from the specified tables.1

Acquire an “AccessExclusiveLock” lock for the table. This lock does not allow reading and wri�ng from 
any other transac�ons.

2

Creates a new table file whose size is 8 KB.3

VACUUM FULL:

PostgreSQL copies only live tuples within the old table file to the new table.4

Remove the old table file.5

Rebuild all indexes6

Update both the sta�s�cs and the system catalogs.7

Release “AccessExclusiveLock” lock8

Remove unnecessary clog files and pages if possible.9



Page
8192 byte

Page

8192 byte

0th

1th

1

1

1

Tuple-4

Tuple-8

Tuple-6Tuple-7

Tuple-3

Tuple-7

Tuple-3

Tuple-2

Tuple-6

Tuple-1

Tuple-5

Tuple-1

2

2

2

3

3

3

4

4

4

Page Header

Page Header

Page Header

Old Table

Dead Table
Tuple-2
Tuple-4
Tuple-5
Tuple-8

New Table

Vacuum Full

For example, as you can see in the above diagram, one table have two pages. 0th page has four tuples. 
Tuple-2 & Tuple-4 are dead tuples. 1st page also has another four tuples, and Tuple-5 & 8 are dead tuples. 
When we execute the Vacuum Full command, PostgreSQL starts removing the dead tuples, like first 
acquiring the “AccessExclusiveLock” lock for that table and creates a new table file whose size is 8 KB. 
A�er that, PostgreSQL copies only live tuples within the old table file to the new table, and a�er copying 
all live tuples, PostgreSQL removes the old file, rebuilds all associated table indexes, updates associated 
sta�s�cs and system catalogs.

Please note that due to “AccessExclusiveLock”, no one can access the table when Full VACUUM is running, 
and this method also requires extra disk space temporarily since it writes a new copy of the table and does 
not release the old copy un�l the opera�on is complete. Disk space required the double size of the table. 
Vacuum Full helps you to reclaim free space from a table to a disk.

Now immediately ques�on comes to mind: What if disk space is about to the full and cannot increase the 
size quickly. So, how we can proceed in that situa�on? Then I would recommend the below approaches.

Approach-1:
It is always good to start with small-sized tables which can easily accommodate the available disk 
space. So, slowly you will get freer disk space, and then there is a high possibility of ge�ng enough disk 
space to accommodate those tables that were ini�ally not eligible for VACUUM FULL due to less disk 
space and high table size.



In PostgreSQL, the transac�on control mechanism assigns a transac�on ID (Txid) to every row that is 
modified in the database; these IDs control the visibility of that row to other concurrent transac�ons.

Transac�on Wraparound is a problem due to Mul�-Version Concurrency Control (MVCC). MVCC relies on 
taking the Txids of two transac�ons and determining which of the transac�ons came first. In Postgres, 
Txids are only 32-bit integers long. That means there are only 232, or we can say about four billion, 
possible Txids only. Honestly, four billion may sound like a lot, but workloads can reach four billion 
transac�ons within a few days or weeks with very high write volume.

Now, an instant ques�on comes to mind that what will happen once PostgreSQL reaches 4 billion 
transac�ons?

So, the answer is that PostgreSQL assigns Txids sequen�ally from a cycle. The cycle goes back to zero and 
looks something like 0, 1, 2, …, 232-1, 0, 1, … To determine which two Txids are older. So, under this logic, 
Postgres has to make sure that all Txids currently in use is within a range of 231 of each other. That way, all 
of the Txids in use form a consistent ordering.

PostgreSQL also ensures that only a valid range of Txids is used by regularly removing all the old Txids. If 
the old Txids are not cleared regularly, then there will be a new Txid that is newer than the newest Txids 
and simultaneously appears older than the oldest Txids then; this is known as Transac�on Wraparound.

In this case, PostgreSQL will terminate normal opera�ons to prevent data corrup�on and stop accep�ng 
new transac�ons request, which causes down�me.

To clear out old txids automa�cally, Postgres uses a special vacuum. Autovacuum adds this “to prevent 
wraparound” message to the process as below.

Please note that if you see this message in your environment, you cannot stop the autovacuum process 
even if you
set autovacuum=off in postgresql.conf or postgresql.auto.conf files.

If the above two approaches are not workable, then, in that case, you must increase the disk space, which 
is the only feasible op�on.

Now, let’s understand the concept of Vacuum Freeze, but before proceeding with this, we should know 
about is Transac�on ID Wraparound issue in PostgreSQL.

Approach-2:
For VACUUM FULL, drop all the indexes of that table on which you want to perform VACUUM FULL and 
then execute the VACUUM FULL. Once this opera�on is completed successfully, then recreate all the 
dropped indexes on that table.

What is the Transac�on ID Wraparound issue in PostgreSQL?



Now, we back to our original point, which is Vacuum Freeze. Autovacuum process does take care of 
freezing the table transac�on ID and replace it with Frozen Txid to avoid Transac�on ID Wraparound 
failure. In simple words, we can say the frozen Txid is always inac�ve and visible.

As a proac�ve measure, DBA needs to monitor the tables to ensure that Txid does not get exhausted for 
the large tables where autovacuum process cannot keep up with vacuuming the frequently accessed 
tables.

Below SQL command helps the DBA monitor the oldest Txid age of databases and the current se�ng for 
the database.

SELECT datname, age(datfrozenxid), current_setting('autovacuum_freeze_max_age')FROM pg_database 
ORDER BY 2 DESC;

If any specific database approaches the freeze_max_age value, then the below query should be executed 
connec�ng to that specific database. The query gives the list of tables with the oldest transac�on ID that 
should be vacuum freeze manually.

SELECT c.oid::regclass, age(c.relfrozenxid), pg_size_pretty(pg_total_relation_size(c.oid)) FROM pg_class c 
JOIN pg_namespace n on c.relnamespace = n.oid WHERE relkind IN ('r', 't', 'm') AND n.nspname NOT IN 
('pg_toast') ORDER BY 2 DESC;

Now, as you know, if you want to perform the Vacuum Full in your heavily busy produc�on environment, 
you have to pay for the long overhead of “AccessExclusiveLock”. So, to overcome this, many enterprise-
level customers are using the “pg_repack” extension.

pg_repack is a PostgreSQL extension tool that can do pre�y much what FULL VACUUM does, like remove 
bloat from tables and indexes and restore the physical order of clustered indexes. Unlike VACUUM FULL, it 
works online without holding

an “AccessExclusiveLock” lock on the processed tables during processing.
pg_repack process performs the following tasks for specified tables or all tables in the database.

pg_repack:

VACUUM FREEZE:



Create a log table to record changes made to the original table1

Add a trigger onto the original table, logging INSERTs, UPDATEs and DELETEs into our log table2

Create a new table containing all the rows in the old table3

Build indexes on this new table4

Apply all changes which have accrued in the log table to the new table5

Swap the tables, including indexes and toast tables, using the system catalogs6

Drop the original table7

pg_repack will only hold an “ACCESSEXCLUSIVELOCK” lock for a short period during ini�al steps (steps 1 
and 2 as above) and during the final swap-and-drop phase (steps 6 and 7). 
For the rest of its �me, pg_repack only needs to hold an “ACCESSSHARELLOCK” lock on the original table, 
meaning SELECTs, INSERTs, UPDATEs, and DELETEs may proceed as usual.

I hope this paper helps you to understand the concept of vacuum and to planned maintenance ac�vity 
effec�vely.

If you have any queries or concerns regarding your Postgres Database management, reach us on 
success@ashnik.com and our technical experts will be happy to guide you. 

Visit: www.ashnik.com to know more


